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Abstract—Traditional backdoor attacks often manipulate
model predictions by exploiting specific trigger conditions, posing
potential threats to the system. Current defense methods are
typically tailored to specific attack types, assuming certain attack
strategies. In real-world scenarios, attackers’ methods are often
unknown, we propose a defense system called the Meta Backdoor
Defense System (MBDS) for detecting backdoor attacks in deep
neural networks. Unlike traditional methods, MBDS does not
rely on assumptions about the attacker’s strategies. Instead,
it requires only black-box access to the model, reducing the
capabilities needed from the defender.

To train the meta-classifier without prior knowledge of the
attack strategy, we utilize Jumbo Contamination to generate
shadow datasets. Additionally, we develop a feature extractor
to extract classification features generated by backdoor models
from shadow samples. The resulting meta-classifier demonstrates
robustness against a range of backdoor attacks and improved
generalization capabilities.

Index Terms—AI security, backdoor defense, DNN, meta
backdoor analysis, meta-classifier, jumbo contamination.

I. INTRODUCTION

With the thriving development of artificial intelligence
technology represented by deep learning, its security issues
have gradually attracted people’s attention. Backdoor attacks
stealthily inject malicious behavior and thus pose a greater
threat because of its stealthiness.Traditional backdoor attacks
often exploit specific trigger conditions to manipulate model
predictions, posing significant threats to the system. While
several methods have been proposed to detect backdoors in
neural networks, many of them rely on certain assumptions
about the attack strategy or require direct access to pre-trained
models, which may not be practical in real-world applications
and demand high capabilities from the defender.

We have proposed the Meta Backdoor Defense System
(MBDS), a defense mechanism designed specifically to detect
backdoors in samples. Notably, our approach involves the
design of a meta-classifier that is capable of identifying
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backdoors without making assumptions about the attacker’s
strategies. Furthermore, our method only requires black-box
access to the model, making it more practical and applicable
to a wide range of attack methods and domains. Additionally, it
imposes minimal requirements on the defender’s capabilities.

The first challenge we address is training the meta-classifier
without prior knowledge of the attacker’s attack strategy. To
tackle this issue, we utilize Jumbo Contamination to generate
shadow datasets, enabling the meta-classifier training process
in an agnostic manner regarding the attacker’s strategies.

In our study, we used the Jumbo Contamination method to
generate shadow sample data, in order to make the shadow
samples have a wider distribution and cover various types
of backdoor attacks, thereby improving the effectiveness and
generalization ability of the binary classifier. This method
constructs poisoned samples by randomly selecting a portion
of samples as clean samples and randomly adding backdoor
triggers to another small portion of samples. We have paid
special attention to the design of Jumbo Distribution to ensure
the inclusion of various types of backdoor attacks, and to
construct a universal function by setting a series of parameters,
providing a foundation for subsequent analysis and experi-
ments.

In terms of feature extraction, we utilized deep neural
network models as feature extractors and extracted classifi-
cation features generated by shadow samples in the poison-
ing model. This feature extraction method enables the meta
classifier to effectively classify malicious backdoor samples
and clean samples, and has stronger generalization ability.
We explored different feature selection strategies for different
types of backdoor attacks and optimized the design of feature
extractors based on experimental results to further improve the
performance of the meta classifier.

In terms of experimental verification, our method has
demonstrated good generalization ability and defense effec-
tiveness. Our meta classifier can effectively detect backdoors
in samples and has strong robustness against different types of
attacks, providing strong technical support for improving the
security of the model.



Fig. 1: Backdoor Attack Schematic Diagram in [1]

II. BACKGROUND

A. Deep Neural Networks

Deep Neural Networks (DNNs) are a class of artificial neu-
ral networks characterized by multiple layers of interconnected
neurons, enabling them to model complex relationships in
data. Each layer of a DNN transforms the input data through
a non-linear activation function Fi(i = 1, 2, . . . , l), allowing
for hierarchical feature representation learning. Given input x,
the output of neural network F can be represented as follows:

F(x; θ) = Fl(Fl−1(. . . (F2(F1(x; θ1)); θ2); . . .); θl) (1)

where θ represent the parameters of the model, and θi denote
the parameters at each layer i of the network. The optimization
of a DNN involves finding the optimal parameters θ∗ that
minimize a given loss function L. The optimization objective
can be expressed as:

θ∗ = argmin
θ

∑
i

L(Fθ(xi), yi) (2)

Fθ(xi) represents the output of the DNN with parameters
θ for input xi, and yi is the corresponding ground truth
label. The objective is to adjust the parameters θ iteratively
using optimization algorithms to minimize the discrepancy
between predicted outputs and ground truth labels, improving
the model’s performance and ability to generalize to unseen
data.

B. Backdoor Attack

A backdoor attack is a method of embedding hidden back-
doors into deep neural networks. When the backdoor is not
activated, the infected model behaves similarly to models
trained in benign environments. However, when the backdoor
is activated by an attacker, the prediction results are altered to
the target labels specified by the attacker.

The image in [1] vividly illustrates this process, as shown
in Fig. 1.

C. Class Activation Mapping

Class Activation Mapping (CAM) [2] is a method that
employs global average pooling and convolutional neural
networks to produce class activation maps, elucidating the
model’s attention mechanisms and discriminative features in
image classification tasks. Given a CNN with feature maps
Ak at the final convolutional layer and class weights wc,CAM
computes the class activation map Lc

CAM as:

Lc
CAM =

∑
k

wc
kA

k (3)

where wc
k denotes the weight of feature map k for class c.

As an improved version of CAM, Grad-CAM [3] enhances
interpretability by utilizing the gradient information that the
model outputs to the weight feature map, and is applicable to
a wider range of applications.

III. THREAT MODEL & DEFENDER CAPABILITIES

In this section, we begin by discussing the two real-world
scenarios of backdoor attacks. Subsequently, we introduce our
threat model along with the defender’s defense objectives and
capabilities.

A. Real-World Scenarios

Due to the significant computational resources required for
training models such as deep learning models, individual users
or small groups often find it challenging to afford. As a result,
in real-world scenarios, users tend to either hand over their
models to third-party platforms for training or directly deploy
pre-trained models provided by third parties. This leads to two
scenarios of backdoor attacks.

1) Adopt Third-Party Platforms: In this scenario, users
submit their dataset, model structure, and training schedules
to untrusted third-party platforms for model training. Even if
the dataset provided by the user is benign, untrusted third
parties can choose not to use the user’s dataset for training
or manipulate the dataset (e.g., adding backdoor samples to
the dataset) and train the model on it. In this case, users have
no control over the training dataset and training schedules,
making backdoor attacks possible.

2) Adopt Third-Party Models: In this scenario, users di-
rectly adopt pre-trained models from untrusted third parties
(which may be malicious), without any access to the model’s
training dataset or training process. Users have extremely
limited defensive capabilities in this case.

In comparison, the attacker’s capabilities are stronger, and
the defender’s capabilities are weaker in the second scenario.
As a defense work, we consider the second scenario (adopt-
ing third-party models) where the attacker’s capabilities are
maximized.

B. Threat Model

The DNN model provided by the attacker to the user
(defender) should perform well on normal samples, correctly
classifying benign samples, as otherwise, the user would notice
it and refuse to deploy the model. However, the attacker’s



model, when fed with backdoor samples containing trigger
patterns predetermined by the attacker, incorrectly classifies
them into the class specified by the attacker.

As a defense work, we consider the attacker possesses max-
imum capabilities. The attacker has full access to the training
dataset and has white-box access to the model. Additionally,
we assume that the attacker can employ any attack strategy.
They can apply any attack approach to create a backdoor
model. The trigger can be any shape, in any position and
any size, and can be inserted into samples with an arbitrary
transparency.

C. Defender Goal

Common defense methods against backdoor attacks include
sample-level defenses and model-level defenses. Sample-level
defenses aim to determine whether the input sample is a
backdoor sample during the inference stage of the model,
preventing the activation of the model’s backdoor by filtering
out backdoor samples. Model-level defenses aim to diagnose
whether the model has been implanted with a backdoor and
refuse to deploy and use the model afterward, or locally retrain
the model to eliminate the backdoor.

In the realistic scenario we are considering (see section
III-A2), users lack sufficient computational resources to retrain
models locally. Therefore, the most practical approach to con-
tinue deploying and using the model is to deploy a detection
system simultaneously. This system detects and filters out
backdoor samples, thereby preventing the activation of the
model’s backdoor and avoiding backdoor attacks. As a result,
our focus is primarily on sample-level defense, and the defense
workflow is illustrated in Fig. 2.

Fig. 2: Sample-Level Defense Workflow

D. Defender Capabilities

The existing requirements for defenders against backdoor
attacks are relatively high, typically requiring one or more of
the following capabilities:

• Assumption on Attack Strategy.
• White-Box Access to the Backdoor Model (Victim

Model).
• Access to Training data.
In this paper, we consider a defender with minimal as-

sumptions and weak capabilities. The defender does not make
any assumptions about the attacker’s attack strategies, does
not require access to training data, and only needs black-box

access to the backdoor model. However, the defender does
need access to a reserved clean dataset to assist in backdoor
defense. This assumption is reasonable, realistic, and has been
adopted by many previous works (e.g., [4]–[7]). It should be
noted that we assume the size of the reserved clean dataset is
much smaller than the size of the training dataset used by the
attacker to train the victim model, and the elements in these
datasets are different.

IV. META BACKDOOR DEFENSE SYSTEM (MBDS)

In this section, we will discuss our Meta Backdoor Defense
System (MBDS). We will begin by providing an overview of
MBDS, followed by a detailed exploration of the construction
process of our defense system. Finally, we will highlight the
evaluation metrics for defense.

A. MBDS Overview

The overall idea behind our Meta Backdoor Defense System
(MBDS) is to train a binary classifier (referred to as the
meta-classifier) on a shadow dataset containing both benign
samples and backdoor samples. This meta-classifier is then
utilized for sample detection. Before input samples are fed
into the deployed model, they are first passed through the
meta-classifier. During this process, the meta-classifier filters
out backdoor samples, allowing only benign samples to pass
through for classification by the model.

The overview of our MBDS is shown in Fig. 3. It consists
of four parts:

1) Shadow Sample Generation: In this step, we generate
numerous shadow samples to serve as the shadow dataset,
providing raw data for the subsequent training of the meta-
classifier. We employ the Jumbo Contamination method to
generate shadow samples, which will be discussed in detail
later (Section IV-B).

2) Feature-Extractor Design: This part is the most crucial
step in our MBDS. In this step, we need to design a feature
extractor to process the shadow samples obtained in the first
step, extracting features that are beneficial for determining
whether samples contain backdoors. These features will be
used for training the subsequent meta-classifier to achieve bet-
ter detection performance. We design a DNN model (shadow
model) as the feature extractor based on the architecture of
the victim model (without specific parameters, making it a
black-box approach) and train it on shadow samples.

3) Feature Extraction: In this step, we utilize the feature
extractor to extract features. The features we select are the
feature maps (a.k.a. Representations) from the shadow model
because they contain relevant features extracted by the model
that are related to the model’s classification criteria.

4) Meta-Classifier Training: Finally, we feed the extracted
features into the meta-classifier and train it using gradient-
based optimization methods. The trained meta-classifier can
then be deployed into the MBDS defense system.



Fig. 3: MBDS Overview

B. Shadow Sample Generation
To better enhance the effectiveness and generalization capa-

bility of the binary classifier, we adopted the Jumbo Contam-
ination proposed in [7] for generating shadow samples.Jumbo
Contamination assumes that attackers may employ various
attack strategies corresponding to different types of trojan
attacks. Employing this method for shadow sample generation
enables the shadow samples to have a broader distribution.

The specific operation of Jumbo Contamination involves
randomly selecting a portion of samples as clean samples.
For another small portion of samples, backdoor triggers are
randomly added while simultaneously modifying the corre-
sponding labels of the samples to construct poisoned samples.
The shape, position, opacity, etc., of the backdoor triggers
are sampled according to the Jumbo Distribution.The precise
formula for the Jumbo Distribution is detailed below,

x′, y′ = I(x, y;m, t, α, yt)

x′ = (1−m) · x+m ·
(
(1− α)t+ αx

)
y′ = yt

(4)

where m ∈ {0, 1}dx represents the mask for the trigger,t ∈
Rdxdenotes the pattern and regularity of the trigger,and α rep-
resents the opacity embedded into x.The function I initializes
a series of parameters to specify the various types of backdoor
attacks to be included.

Given the raw dataset D = {(xi, yi)}Ni=1 and the number of
the shadow datasets m, we processed the dataset D with jumbo
contamination to generate a set of m shadow datasets Dm.
The jumbo contamination is shown in Algorithm1. We first
randomly sample the jumbo settings (line 3). Then we select
the dataset Dcontam from the raw dataset D and operated each

sample in Dcontam according to Eqn.4 to generate the shadow
dataset Dshadow (line 5-8). We repeat the process m times to
generate a set of shadow datasets Dm.

Algorithm 1: Jumbo Contamination

Input: Dataset D = {(xi, yi)}Ni=1, number of shadow
datasets m

Output: Dm: a set of m shadow datasets

1 Dm ← [];
2 for u← 1 to m do
3 m, t, α, yt, p =gen jumbo setting();
4 Dshadow ← D;
5 Dcontam ←sample from(D, p);
6 foreach sample (xj , yj) in Dcontam do
7 (x′

j , y
′
j)← insert backdoor(xj , yj ;m, t, α, yt);

8 Dshadow ← Dshadow ∪ {(x′
j , y

′
j)};

9 end
10 Dm ← Dm ∪ {Dshadow}
11 end
12 return Dm;

C. Feature-Extractor Design

The success of a backdoor attack requires three conditions
[1]: 1) the model is injected with a backdoor; 2) the samples
contain backdoor triggers; 3) the triggers match the model’s
backdoor. Now that the victim model has been implanted with
a backdoor, only samples injected with matching backdoor
triggers can activate the backdoor. To detect backdoors in
samples, using the corresponding backdoor model as a feature
extractor is undoubtedly the most suitable choice. Since the



defender cannot access the training dataset of the backdoor
model, we simulate this by using shadow samples. The cor-
responding feature extractor is the backdoor shadow model
trained on shadow samples.

Since the defender has knowledge of the structure of the
victim model, the feature extractor can be designed to have an
architecture that is consistent or similar to the victim model’s
structure.

D. Feature Extraction

According to [8], poisoned models depend on different
criteria when classifying benign samples versus backdoor
samples. The model primarily depends on backdoor triggers in
the samples to classify backdoor samples, whereas for benign
samples, the model relies more on features related to the class
in the samples for classification. Since the representations (i.e.,
feature maps) of deep neural networks contain the basis for
model classification, we consider using the model’s feature
maps as input features to train the meta-classifier.

This part can be seen as the feature engineering process in
traditional machine learning, with the goal of improving the
model’s performance.

E. Meta-Classifier Training

We employ a neural network model as our meta-classifier,
thus enabling us to use gradient-based optimization methods
for training. By utilizing the previously extracted features as
training data, we compute the loss between the outputs of the
classifier and the ground truth labels (indicating the presence
of backdoors) and update the classifier’s parameters through
error backpropagation. This process enables the classifier to
learn how to detect backdoor samples.

F. Evaluation Metrics

For the task of detecting whether samples contain back-
doors, which is a binary classification task, we can use
the following three metrics to comprehensively evaluate the
defense effectiveness:

1) False Acceptance Rate (FAR): Represents the probabil-
ity of mistaking a backdoor sample as a benign sample.

2) False Rejection Rate (FRR): Represents the probability
of mistaking a benign sample as a backdoor sample.

3) F2 Score: A weighted harmonic mean of precision and
recall, with a higher weight on recall (beta = 2 in the
F-beta measure).

These metrics are used to evaluate the security (FAR),
usability (FRR), and overall detection performance (F2 Score)
of the defense system in detecting backdoor samples.

The values of these metrics range from 0 to 1, where lower
values of FAR and FRR indicate better detection performance,
while a higher F2 Score indicates better overall detection
performance.

In practical scenarios, there is often a trade-off between
FAR and FRR, where a slightly higher FRR may be accepted
to minimize FAR.

V. EVALUATION

In this section, we will commence by presenting our exper-
imental setup, followed by a detailed analysis and explanation
of jumbo contamination and the feature extractors along with
the features extracted. Subsequently, we will evaluate the
defense effectiveness of MBDS (Meta Backdoor Defense
System). Additionally, we will investigate the impact of the
number of feature extractors on the defense system’s per-
formance. Lastly, we will engage in a discussion regarding
alternative feature designs for MBDS.

A. Experiment Setup

Since the majority of deep neural network backdoor attacks
and their defenses are concentrated in the computer vision
domain, particularly in image classification tasks, our experi-
ments also focus on image classification. We conducted tests
using the MNIST and CIFAR-10 datasets. It is important to
note that we randomly sampled only 0.04 of the datasets as
the reserved dataset for the defender and 0.50 as the training
dataset for the attacker. This choice mirrors the realistic
scenario where users often struggle to have a large amount
of training data available.

For MNIST, we adopt the same CNN structure as in [9].
For CIFAR-10, we use the same CNN structure as in [10].

a) Feature Extraction: We utilized a model whose archi-
tecture is identical to the victim model as our feature extractor.
The output feature maps before the first fully connected layer
of the CNN model are selected as feature representations.
To enhance feature diversity, we generated multiple shadow
sample datasets and trained corresponding feature extractors
on each dataset separately (the impact of the number of feature
extractors on the defense system will be discussed in Section
V-D). Additionally, to improve feature quality, we introduced
two filtering layers during feature extraction. First, we filtered
out features from samples misclassified by the shadow model
to ensure that the extracted features contain accurate classifi-
cation cues. Second, we filtered out features from backdoor
samples whose ground-truth label matches the target label, as
the shadow model’s classification basis for these samples is
uncertain (it may rely on class information, backdoor triggers,
or both). Furthermore, to enhance the efficiency of meta-
classifier training, we randomly selected 0.01 of the extracted
features from each feature extractor as training data for the
meta-classifier.

b) Meta-Classifier: Our meta-classifier adopts a simple
CNN model consisting of two 1× 1 convolutional layers [11]
and three fully connected layers. The 1×1 convolutional layers
are primarily used to extract features from the feature map
input, capturing information about backdoor neuron features,
while the subsequent fully connected layers are utilized to
compute the backdoor score.

B. Jumbo Contamination & Feature Extraction

In Jumbo Contamination, we are able to obtain various
styles of backdoor triggers as we sample from the simulated



TABLE I: Benign Accuracy (BA) and Attack Success Rate
(ASR) of feature-extractors.

Dataset # of Shadow Datasets BA ASR
MNIST 1024 96.23% 91.38%

CIFAR-10 1024 46.04% 90.90%

backdoor distribution. Examples of trigger and backdoor sam-
ples are illustrated in Fig. 4.

Performance of the shadow models (feature extractors)
trained on the shadow dataset obtained through Jumbo Con-
tamination is shown in Table I. It should be noted that due
to the defender having only 0.04 of the complete dataset, the
shadow models’ performance on the CIFAR-10 dataset shows
a significant drop compared to the baseline. However, since we
added two layers of filters during feature extraction (section
V-A0a), this does not affect the quality of our features and the
performance of the meta-classifier.

The visualization of features extracted from benign and
backdoor samples using the feature extractor is shown in
Fig. 4. It is evident that there is a certain correlation between
the activations in the feature maps and the backdoor triggers.
This indicates the rationale behind using the model’s feature
maps as diagnostic information for backdoors. Therefore,
training the meta-classifier with these features is expected to
achieve good detection performance and stronger generaliza-
tion capability (this will also be validated in section V-C).

C. Detection Evaluation

To evaluate the defense performance of our MBDS, we
generated 64 sets of shadow datasets using Jumbo Contamina-
tion and trained victim models on these datasets. Additionally,
we employed BadNets attack [9] and Blended attack [12]
to generate 32 victim models each. The performance of the
victim models is shown in Table II. We deployed MBDS on a
total of 128 victim models under different attack settings and
evaluated its defense effectiveness, as shown in Table III.

TABLE II: Performance of Victim Models

Dataset Attack Setting BA ASR
MNIST Jumbo 99.07% 99.51%
MNIST BadNets 99.18% 99.89%
MNIST Blended 99.16% 99.99%

CIFAR-10 Jumbo 68.25% 99.59%
CIFAR-10 BadNets 68.32% 99.96%
CIFAR-10 Blended 68.27% 99.20%

TABLE III: MBDS Defense Performance

Dataset Attack Setting Accuracy FAR FRR F2
MNIST Jumbo 59.49% 49.12% 31.90% 50.27%
MNIST BadNets 54.31% 68.61% 22.77% 32.66%
MNIST Blended 70.32% 42.40% 16.96% 59.04%

CIFAR-10 Jumbo 80.01% 20.85% 19.13% 77.61%
CIFAR-10 BadNets 87.03% 00.60% 25.34% 94.73%
CIFAR-10 Blended 57.02% 35.00% 50.95% 61.71%

It can be observed that MBDS performs relatively well
against BadNets attacks (F2 Score of 94.73%), performs

(a) Feature Representation in MNIST

(b) Feature Representation in CIFAR-10 (Local)

(c) Feature Representation in CIFAR-10 (Global)

Fig. 4: Feature Representations



poorly in Blended attacks (F2 Score of 61.71%), and falls
between the two in Jumbo attacks, which simulate various
backdoors. This suggests that learning global backdoor trigger
information is more challenging than learning local trigger
information.

Additionally, we noticed performance differences of MBDS
across different datasets. MBDS performs better on the
CIFAR-10 dataset compared to the MNIST dataset. This dif-
ference may be attributed to the simplicity of data in MNIST,
leading to overfitting of the meta-classifier on backdoor sample
features. It could also be due to the selected features containing
less information (feature size of 4×4×32), resulting in poorer
generalization performance of the meta-classifier. We believe
that improving the performance of MBDS on MNIST can
be achieved by modifying the meta-classifier architecture or
selecting features with more information.

It should be noted that we only used 0.01 of the shadow
sample data (0.04 of the full dataset) for training the meta-
classifier. We believe that if more or all shadow sample data
were used, the defense effectiveness of MBDS should improve,
and its generalization performance should be stronger.

D. Impact of Number of Feature Extractors

In this section, we further investigate the impact of the
number of feature extractors on the defense performance of
MBDS. The results are shown in Fig. 5.

The results indicate that although there is some fluctuation
in the metrics with the change in the number of feature
extractors, overall there is a trend of improvement in all
metrics as the number of feature extractors increases. This
trend suggests that the defense performance of MBDS is
getting better. The defense effectiveness gradually stabilizes
when the number of feature extractors reaches 1024.

E. Research on Feature Selection

In this section, we explore other feature designs for MBDS.
In addition to the feature maps from the DNN model that we
used earlier, we also attempted to use Grad-CAM [3] as the
feature adopted by the defense system. Through experimental
validation, its performance is generally similar to that of the
feature maps. This result partially indicates that our MBDS
does not depend on specific feature designs. Furthermore, we
believe that more refined features will contribute to further
improving the defensive performance of MBDS.

VI. DISCUSSION & FUTURE WORK

A. Discussion

Our research has introduced innovative methods in two
key areas. Firstly, we posit a decreased ability of defenders
to simulate reality. Secondly, the integration of Jumbo Con-
tamination and Feature Extraction enhances robustness and
generalization.

Most state-of-the-art research on test sample filtering attacks
requires a strong assumption about the defender’s capabilities,
including access to a benign dataset of the same type. In real-
world scenarios, backdoor defense can often be challenging.

(a) Defense Accuracy

(b) Defense FAR

(c) Defense FRR

(d) Defense F2 Measure

Fig. 5: Defense Performance with respect to the number of
feature extractors on CIFAR-10.



In survey [1], three types of backdoor attack scenarios are
mentioned. Third-party datasets, platforms or models are all
very common situations in reality. In these cases, attackers
have complete control over the original type of training data,
making it very difficult for defenders to obtain a completely
benign dataset of the same type.

In our simulating scenario, a white-box model is the only
thing the defender is equipped with to facilitate a protection,
without the need for any benign data set of the same type.
By utilizing any other type of benign data set through Meta
Backdoor Analysis, the defender can obtain a meta-classifier
to defend against backdoor attacks by filtering samples. This
makes our defense method more practical and closer to real-
world situations. Additionally, the defender does not need
to know the attacker’s specific method. Due to the use of
Meta Backdoor Analysis, our defense method can effectively
address various backdoor attacks, demonstrating strong gener-
alization and robustness.

Based on the previous analysis, our defense method adopts
the Meta Backdoor Analysis approach, using Jumbo Con-
tamination in Shadow Sample Generation to simulate various
backdoor triggers for backdoor attacks. The design of the
feature extractor and the selection of features are conducive to
enlarging the difference between backdoor samples and benign
samples, making our defense method more robust and with
stronger generalization capabilities.

In conclusion, as a method for detecting backdoor samples,
our proposed approach has lower requirements for real-world
scenarios and strong generality. With the widespread use of
deep learning in various fields today, our method can better
resist attacks targeting different tasks in different situations,
allowing more tasks based on deep learning methods to be
conducted safely and improving the reliability of related work.

B. Future Work

For our current work, we can extend the scope of our
research in two main aspects. On one level, we can expand the
scenarios for our backdoor defense by assuming that the defen-
sive capabilities are weaker, meaning that the meta-classifier
trained by the defense side is not aware of the architecture of
the model to be protected in advance. Apart from that, we can
also assume that the attacking side has stronger capabilities,
allowing the attacker to bypass our meta-classifier detection
using more powerful backdoor attack methods such as adaptive
attacks.

First, we can make an assumption to modify the defense
side of our scenario. Assuming that the defense side lacks
prior knowledge of protecting the model when implementing
backdoor defense. Therefore, it would be more challenging for
a defender to train a meta-classifier through meta backdoor
analysis. In fact, despite Oh (2019) [13] proposing a method
using existing techniques to infer the structure of a black-
box model, research on attack scenarios with defenders having
very weak capabilities often affiliates with reality and is more
practically significant.

In addition, we can assume that the attacker obscure stronger
capabilities. There are two paper from Shokri et al. (2020)
[14] and Saha et al. (2020) [15] introducing a more powerful
type of backdoor attack called Adaptive Attack. We conducted
experiments on both local backdoor triggers such as BadNets
(Gu et al., 2019) [9] and global backdoor triggers such as
Blended Backdoor Attacks (Chen et al., 2017) [12]. However,
if the attacker has access to the relevant parameters of our
meta-classifier, i.e., a white-box attack, the attacker may
potentially devise a new adaptive attack that can strategically
incorporate a special training process during the poisoning
phase of the model to bypass our meta-classifier’s filtering
of poisoned samples during the testing phase.

Therefor, we plan to adjust the structure of our meta-
classifier or relating methods to obtain relatively satisfying
results under similar scenarios when the attacker is stronger
pr the defender is weaker than we expected.

VII. RELATED WORK

In this section, we will introduce recent research on back-
door attacks, backdoor defense, and meta-analysis in deep neu-
ral networks, and compare them with our proposed methods.

A. Backdoor Attacks

In recent years, researchers have proposed various backdoor
attack techniques for deep neural networks.

Gu et al. (2019) proposed a method for evaluating back-
door attacks in deep neural networks, called Badnets [9].
They utilized adversarial training and model fine-tuning to
successfully generate malicious models with predetermined
backdoor behavior; Chen et al. (2017) [12] explored a targeted
backdoor attack method for deep learning systems, utilizing
data pollution techniques to implant backdoor triggers during
model training. This method tampers with the training data,
causing the model to exhibit misclassification behavior when
receiving specific trigger inputs;

Liu et al. (2018) proposed a backdoor attack technique
called Trojaning [16], which successfully embedded backdoor
triggers in neural networks by modifying training data or
model parameters, achieving control over the model; Turner
et al. (2018) studied a backdoor attack method called Clean
label [17], which utilizes normal training data but successfully
embeds backdoor behavior into the model through reasonable
regularization and optimization techniques, leading to misclas-
sification behavior in specific situations.

Recently, Souri et al. (2022) [18] proposed a backdoor
attack technique called Sleeper Agent, which can implant
hidden backdoor triggers in neural networks trained from
scratch and has scalability on large-scale datasets.

It can be seen that backdoor attack technology seizes the
fragility of model classification and tampers with data at the
feature layer to achieve the goal. Our work also focuses on the
different levels of image features, innovates feature extraction
methods, and identifies backdoor features.



B. Backdoor Defenses

Backdoor Defenses refer to defending against both data and
models. Most defense efforts against backdoor attacks are fo-
cused on input samples and model parameters, distinguishing
between malicious and benign inputs based on their statistical
differences in the backdoor model.

For models, they can be divided into model purification and
model inspection.

Defenses [19] [4] [20] consider that triggers can trigger
abnormal activation values, and perform activation statistics
and pruning, fine-tuning, and other operations on neurons,
achieving good results; [21]indirectly applies pattern con-
nections to check backdoor behavior, effectively reducing
backdoors.

However, modifying the model to defend against potential
disruptions to its normal functionality and potentially con-
suming significant computational resources for fine-tuning, so
there is room for improvement in such methods. Therefore, we
choose to adopt a simpler and more efficient method, which
takes into account the dimensions of the dataset.

Furthermore, for data, it can be divided into input trans-
formation and input filtering. For input filtering, it can be
further divided into training sample filtering based defenses
and testing sample filtering based defenses.

The AC [22] used activation clustering technology to ob-
serve the activation patterns of neural networks under nor-
mal input and cluster them into several clusters. Then, the
activation mode of the network when subjected to backdoor
attacks was analyzed, and abnormal behavior was detected
by comparing it with normal mode. The unique feature of
this method is that it does not rely on prior knowledge of
the existence or form of backdoor attacks, but rather detects
anomalies by learning normal behavior, thus having a certain
degree of universality and applicability.

The STRIP [5] designed by Gao et al. is a very typical work
of input filtering. The idea of this scheme is to strongly perturb
each input sample to detect trigger input. For perturbed trigger
inputs, their predictions remain unchanged under different
modes of disturbance, while the predictions differ greatly when
different disturbance modes act on benign samples. Therefore,
an entropy measure is introduced to quantify this prediction
randomness. Finally, it is clear to distinguish between trigger
inputs that always display low entropy and benign inputs that
always display high entropy.

Although previous methods have achieved good defense
effects in specific scenarios, the above model cannot perform
well when attackers use improved attack methods (such as
randomly adding backdoors); The reason for this is that the
model did not grasp the standards for classifying backdoor
samples, resulting in poor generalization ability. In contrast,
our method adopts a deep learning approach to extract features
from different backdoors, train a meta classifier to distinguish
backdoor samples, and achieve precise filtering of samples
during the testing phase, making it simpler and more efficient
than previous methods.

C. Meta Analysis

Meta analysis is a systematic research method aimed at syn-
thesizing and analyzing data from multiple independent studies
to provide more comprehensive and accurate conclusions. In
the field of computer security, especially in deep learning
and neural network security, meta-analysis is often used to
integrate the results of different studies to reveal general trends
and insights, thereby helping to develop more effective defense
strategies.

The paper [7] is a study on using meta neural analysis
methods to detect artificial intelligence trojans. This method
first injects known backdoor triggers into the training data
and collects corresponding model output data. Then, the meta
neural network is used to analyze these output data to identify
any signs of backdoor attacks in the model. This method
utilizes the concept of meta learning to detect backdoor attacks
through meta analysis of model behavior.

Based on the above papers and related work, it can be
seen that metabackdoor analysis has made certain progress in
analyzing backdoor attacks. By integrating data from multiple
independent studies and model behavior, the metabackdoor
analysis method can identify potential backdoor triggers in
the model, thereby improving the detection ability of backdoor
attacks. The advantage of this method is that it can analyze
different types of backdoor attacks, rather than being limited
to specific attack methods. Therefore, when designing defense
strategies, meta backdoor analysis can be considered as an
effective detection method to improve the security and robust-
ness of deep neural networks.

VIII. CONCLUSION

In this paper, we proposed a defense system (MBDS)
for deep neural network backdoor attacks based on meta
backdoor analysis, which can effectively counter various types
of backdoor attacks under the condition of weak defender
capabilities. However, due to the challenging assumptions of
strong attacker capabilities and arbitrary attack strategies, the
generalization ability of our defense system needs further
improvement. In conclusion, our work explores the general
defense against backdoor attacks. We look forward to more
researchers contributing to this area of research.
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